напряжение

Зарядное устройство для автомобильных аккумуляторов

Зарядное устройство для автомобильных аккумуляторов аккумулятор

Зарядное устройство для автомобильных аккумуляторов

Устройство в условиях хранения аккумулятора в зимнее время позволяет автоматически включать его на зарядку при снижении напряжения и также автоматически выключать зарядку при достижении напряжения, соответствующего полностью заряженному аккумулятору. Схема обеспечивает два режима работы — ручной и автоматический.

В ручном режиме работы тумблер SA1 находится во включенном состоянии. После включения тумблера Q1 напряжение сети поступает на первичную обмотку трансформатора Т1 и загорается индикаторная лампочка HL1. Переключателем SA2 устанавливается необходимый ток зарядки, который контролируется амперметром РА1. Напряжение контролируется вольтметром PU1. Работа схемы автоматики на процесс зарядки в ручном режиме не влияет.

Далее...

Преобразователь напряжения для накала свечи

Преобразователь напряжения для накала свечи аккумулятор

Предисловие

Довольно часто для моделистов представляет большую сложность покупка двухвольтового аккумулятора для накала свечи - как правило, из-за отсутствия подобных аккумуляторов в магазинах или их высокой стоимости. В то же время многие имеют под рукой обычный автомобильный аккумулятор, или, например, аккумуляторную батарею от блока бесперебойного питания для компьютера. Частенько в таких случаях свеча подключается через реостат, на котором падает большая часть напряжения аккумулятора. При токе свечи 3. 4 А и падении напряжения на реостате около 10 В получается, что мощность, рассеиваемая им, составляет 30. 40 Вт - это мощность обыкновенного радиолюбительского паяльника. Не многовато ли? Это, конечно, простой способ накала свечи, но крайне неэффективный - большая часть энергии аккумулятора рассеивается впустую. Но есть и другой способ.

Предлагаемая вашему вниманию схема предназначена для преобразования напряжения 12-ти вольтового аккумулятора в 1.5. 2 вольта, требуемые для накала свечи калильного двигателя. Накал можно регулировать в широких пределах, поэтому схема применима для любых типов свечей, как отечественных, так и импортных. Она построена полностью на отечественных широко распространённых деталях, недорогая и легко повторяемая. Этот преобразователь эксплуатировался в течение двух сезонов (2000 и 2001 год ) и зарекомендовал себя с наилучшей стороны - за всё это время не произошло ни единого отказа.

Далее...

Т е р м о с т а т

Т е р м о с т а т напряжение

Электронный блок управления электровентилятором системы охлаждения двигателя.

Возможность регулировки температуры включения позволит вам самостоятельно установить максимальную температуру двигателя - не зависимо от параметров штатного датчика включения вентилятора или параметров запрограммированных в компьютере вашего автомобиля.

Дополнительные возможности

Это устройство может управлять стандартным авто-реле и коммутировать нагрузку до 30А включая и выключая ее при определенной температуре датчика. Вы можете использовать его для управления дополнительными сигнализаторами - например о температуре масла турбодвигателей либо температуры в АКПП. Если вам надо поддерживать температуру до 40 градусов - установите резистор R11 (принципиальная схема устройства) на 100кОм.

Вам надо собрать вот такую схему:

Как это работает?

На большинстве автомобилей (отечественных и зарубежных) в качестве датчика указателя температуры двигателя применяют терморезистор с уменьшающимся при возрастании температуры сопротивлением - чем горячее двигатель тем меньшее сопротивление имеет датчик. Соответственно (при неизменном напряжении в сети автомобиля) напряжение на датчике более высокое при холодном моторе - понижается при нагреве мотора. Аналогично ведет себя и напряжение на датчике.

Указатель температуры в комбинации приборов показывает отношение напряжения на датчике температуры к напряжению в бортовой сети автомобиля. Если мы хотим включить электровентилятор при определенной температуре двигателя - то нам нужно устройство переключающее контакты реле при определенном соотношении напряжения на датчике температуры к напряжению в сети автомобиля. Именно это и делает предлагаемое устройство.

Напряжение с датчика поступает в блок через фильтр низких частот R2 C1 (см. принципиальную схему) на инвертирующий вход "-" первого операционного усилителя (ОУ1). Если температура двигателя не достигла установленной точки включения реле (устанавливается изменением положения движка резистора R2. положение "ниже" соответствует более высокой температуре включения реле) то потенциал на входе "-" выше чем потенциал на не инвертирующем входе "+" ОУ1 и на выходе ОУ1 имеется низкий уровень - такой же уровень и на входе ОУ2 и на его выходе - поэтому транзистор закрыт и реле обесточено.

Принцип работы ОУ в том, что он сравнивает потенциал на входах "+" и "-" и если (V+) > (V-) на выходе будет высокий уровень а если неравенство направлено в другую сторону то на выходе потенциал близок к уровню "земли".

При повышении температуры датчика выше точки установленной вами для включения вентиляции, потенциалы на входах ОУ1 сравниваются и на выходе генерируется типа ШИМ сигнал - т.е. сигнал с определенным соотношением времени низкого уровня и высокого уровня - этот сигнал интегрируется цепочкой R5 C2 и когда напряжение на C2 достигнет примерно 2/3 напряжения питания (такой потенциал на входе "-" ОУ2 благодаря резисторам R6-R8) ОУ2 переключится и на его выходе возникнет высокий уровень транзистор откроется и реле включится. При открытии транзистора на входе "-" ОУ2 потенциал скачком уменьшиться примерно до 1/3 напряжения питания - это задает минимально возможное время переключений реле - равно оно времени изменения напряжения С2 на 1/3 напряжения питания и определяется примерно так С2*R5 секунд. Благодаря этому не происходит бесконечного переключения реле (опасного выгоранием его контактов) несмотря на довольно медленно меняющуюся температуру двигателя.

По мере снижения температуры мотора скважность ШИМ сигнала будет уменьшаться и С2 будет разряжаться - когда потенциал на нем опуститься ниже 1/3 напряжения питания ОУ 2 переключиться в свое исходное состояние и реле выключиться.

Этот процесс периодически повторяется - каждый раз когда температура двигателя достигает установленного вами предельного уровня и затем благополучно опускается благодаря вовремя включенному вентилятору.

При показанных на схеме номиналах элементов и учитывая инертность системы охлаждения мотора - время работы вентилятора составляет примерно 40 секунд на автомобиле ГАЗ-3110 с 406 двигателем.

Устройство достаточно надежно благодаря следующим конструктивным особенностям - R10, С3 и С4 - образуют фильтр от помех по питанию, а диод D1 делает безопасным ошибочное подключение устройства обратной полярностью. Короткого замыкания вывода Х3 на "землю" устройство не боится, а если вы опасаетесь замыкания на "+" (это очень мало вероятно) то можете в разрыв провода идущего от точки Х3 вмонтировать резистор на 10 - 15 ом 0,5 вт - он защитит транзистор от короткого замыкания в цепи включения реле ограничивая максимальный ток через него.

Принципиальная схема устройства

Печатная плата устройства (крупный план)

Блок смонтирован в металлическом корпусе автомобильного реле РС508. Имеет два вывода длиной около 20 см и провод (от Х1) для подключения к датчику длиной 0,7 м. Корпус имеет ушко для крепления.

Регулировочный винт подстроечного резистора установки температуры срабатывания - доступен снаружи.

Размещение компонентов на плате:

Электронные компоненты

Микросхема: LF442CN или ACN - сдвоенный операционный усилитель с полевым входом и напряжением питания от 6 до 40 вольт.

Транзистор я использую КТ815Г, подойдут с буквами Б и В, можно применить КТ817Б2 или Г2 у них коэффициент усиления не менее 100. Ниже есть рисунок с расположением выводов транзистора.

Диоды - обычно применяют КД105 и КД522Б но в принципе любой подойдет средней мощности на ток 0.2 и более ампер и напряжение 60 и более вольт.

Т е р м о с т а т напряжение

Постоянные резисторы - для уменьшения размеров, я применил "чип-резисторы" на 0.125 вт.

Резисторы R6 R7 R8 - могут иметь номинал от 5 ком до 2 мОм - главное чтобы они были одинакового номинала.

R2 - 10 кОм - я использовал многооборотный подстроечник с гибкими выводами типа СП5-3. Многооборотным удобней настраивать температуру включения (можно использовать номинал от 2.2 ком до 22 ком).

Конденсаторы малогабаритные либо "чипы".

Внимание! Устройство собирается и испытано с компонентами указанными на схеме. Я не проверял работу устройства с другими номиналами элементов - хотя это вполне возможно.

Подключение и Настройка

Когда все спаяно и припаяны выводы (лучше по цвету штатной проводки автомобиля) - обязательно промойте плату кистью с ацетоном или растворителем от остатков флюса. Покройте нитро-лаком или силиконом.

Поставьте движок подстроечника R1 в среднее положение. Поместите устройство в корпус. Подключите провода согласно схеме.

Обратите внимание, что авто-стандартом является: черные провода подключаются к "массе" автомобиля. Обычно реле вентилятора включено так как указано на схеме устройства. "85" это вывод обмотки реле подключенный к плюсу питания при включенном зажигании, "86" это второй конец обмотки реле и если его замкнуть на "массу" по обмотке потечет ток и контакт "30" реле переключится с "87" на "88". При этом включается нагрузка последовательно которой включены контакты "30" и "88". На четырех контактных реле контакт "87" отсутствует. Вам нужно отыскать реле включения вентилятора своего автомобиля и посмотреть на нумерацию его выводов. Если ни к "85" ни к "86" контактам не подходят черные провода - значит ваше реле включено "как надо" т.е. по схеме устройства.

Для автомобиля ГАЗ-3110 и для большинства других машин с которыми я имел дело - температуре двигателя в 90 градусов соответствует напряжение на датчике равное примерно половине напряжения сети автомобиля - однако есть небольшие отличия. Подключив устройство (снимите временно провод со штатного датчика включения вентилятора - если он имеется) заведите мотор и подождите пока он прогреется. Если устройство сработает раньше желаемой вами температуры то поверните винт регулировки по часовой стрелке на один оборот (переместите движок подстроечника вниз по схеме) и подождите следующего включения вентилятора. Если температура достаточно высока, а вентилятор не включился - поверните винт регулировки на два оборота против часовой стрелки и подождите не менее 30 секунд, повторите эти операции до достижения желаемой температуры срабатывания реле.

Замечание: Устройство позволяет установить практически любую температуру срабатывания - но при размещении датчика на двигателе температура должна быть выше температуры открытия клапана термостата! В противном случае вентилятор включиться но не сможет выключиться так как термостат не даст мотору охладится ниже определенной температуры.

Если ваш автомобиль имеет реле включения электровентилятора - то Вы можете просто подключить контакты Х2 и Х3 к штатному реле в соответствии со схемой. Если Вы затрудняетесь в определении как правильно подключить устройство - то вы можете использовать дополнительно любое авто-реле а его нормально-разомкнутые контакты подключить к контактам штатного датчика включения вентилятора либо параллельно силовым контактам штатного реле включения электровентилятора.

Материал размещен с согласия Симонова Сергея. Если у Вас возникли вопросы, Вы можете их задать автору по адресу [email protected]

Неочищ.дорога "Аэропорт Киев(терм.А) - Воздух-ский пр-т"

Микросхема таймер кр1006ви1

Микросхема таймер кр1006ви1 напряжение

Загружено 23.12.2011

Микросхема таймер кр1006ви1 таймера

Микросхема таймера КР1006ВИ1 является отечественным аналогом широко распространённой во всем мире микросхемы таймера NE555. Напряжение питания ИС от 4,5 до 18 вольт. Точность таймера не зависит от изменения напряжения питания и составляет не более 1% от расчетного значения.Назначение выводов:Вывод №1 -- Земля. Вывод подключается к минусу питания или к общему проводу схемы.Вывод №2 -- Запуск. Этот вывод является одним из входов компаратора №2. При подаче на этот вход импульса низкого уровня, который должно быть не более 1/3 напряжения питания, происходит запуск таймера и на выводе №3 появляется напряжение высокого уровня на время, которое задается внешним сопротивлением Ra+Rb и конденсатором С. Данный режим работы называется -- режим моностабильного мультивибратора.Вывод №3 -- Выход. Высокий уровень равен напряжению питания минус 1,7 Вольта. Низкий уровень равен примерно 0,25 вольта. Время переключения с одного уровня на другой происходит примерно за 100 нс.Вывод №4 -- Сброс. При подаче на этот вывод напряжения низкого уровня (не более 0,7в) произойдет сброс таймера и на выходе его установится напряжение низкого уровня. Вывод №5 -- Контроль. Обычно, этот вывод не используется. Однако его применение может значительно расширить функциональность таймера. Вывод №6 -- Стоп. Этот вывод является одним из входов компаратора №1. При подаче на этот вывод импульса высокого уровня (не менее 2/3 напряжения питания), работа таймера останавливается, и на выходе таймера устанавливается напряжение низкого уровня. Вывод №7 -- Разряд. Этот вывод соединен с коллектором транзистора Т1, эмиттер которого соединен с общим проводом. При открытом транзисторе конденсатор С разряжается через переход коллектор-эмиттер и остается в разряженном состоянии пока не закроется транзистор. Транзистор закрыт, когда на выходе таймера высокий уровень и открыт, когда на выходе низкий уровень.Вывод №8 -- Питание. Напряжение питания таймера составляет от 4,5 до16 вольт.Таймер может работать в двух режимах: моностабильный мультивибратор и генератор прямоугольных импульсов. 1. Моностабильный мультивибратор. Моностабильный означает, что стабильное состояние у таймера только одно, когда он выключен. Во включенное состояние его можно перевести временно, подав на вход таймера какой-либо сигнал. Время нахождения таймера в активном режиме определяется RC цепочкой.2. Генератор прямоугольных импульсов. Таймер генерирует последовательность прямоугольных импульсов определяемых RC цепочкой.

Далее...

Стартер

Стартер регулятор

Рис. 7-12. Схема для проверки регулятора напряжения: 1 - контрольная лампа; 2 - вывод «масса» регулятора напряжения; 3 - вывод «DF» регулятора напряжения; 4 - регулятор напряжения; 5 - вывод «D+» регулятора напряжения; 6 - аккумуляторная батарея

постоянного тока со шкалой до 15-30 В класса точности не хуже 1,0.

Далее...

3 Ответы

3 Ответы реле

Для проверки реле-регулятора на автомобиле необходимы следующие приборы: вольтметр, амперметр, нагрузочный реостат, а также соединительные провода.

Проверка регулятора напряжения. Для проверки величины регулируемого напряжения нужно сделать следующе:

а) отъединить батарейный провод от клеммы БАТ реле-регулятора;

б) присоединить к клемме БАТ нагрузочный реостат и амперметр;

в) присоединить клемму (—) вольтметра на клемму БАТ реле-регулятора, клемму (+) вольтметра — на массу реле-регулятора;

г) пустить двигатель и, увеличив число оборотов его коленчатого вала до среднего эксплуатационного числа оборотов (1500— 2000 в минуту). по амперметру с помощью нагрузочного реостата установить ток нагрузки в 10 а. Показание вольтметра при этом сответствует величине регулируемого напряжения. Колебания стрелки вольтметра при этом не должны превышать 0, 2 в.

3 Ответы вольтметр

Большие колебания стрелки (при исправном генераторе) указывают на нестабильную работу контактного узла регулятора напряжения.

При несответствии величины регулируемого напряжения техническим требованиям или при сильном колебании стрелки вольтметра реле-регулятор должен быть осмотрен и отрегулирован.

Если при проверке будет установлено, что регулируемое напряжение выше допустимой величины, то в первую очередь следует проверить надежность соединения массы генератора и массы реле-регулятора. Для этого нужно соединить массовые клеммы дополнительным проводом и проверить регулируемое напряжение.

Если напряжение снизится, то, следовательно, причиной чрезмерного повышения регулируемого напряжения явилось нарушение надежного соединения массы генератора и реле-регулятора. Если же напряжение не изменится, то чрезмерное повышение его вызвано нарушением регулировки регулятора напряжения.

Вопросы и ответы 2013, часть 13/3

Lets Play Jedi Academy #3 (+ ответы на вопросы #7)

Электронное зажигание

Электронное зажигание конденсатор

Каталог принципиальных схем - Автомобильная электроника ЭЛЕКТРОННОЕ ЗАЖИГАНИЕ

Предлагамое устройство избавит автолюбителей от многих проблем, особенно в зимнее время. Оно не требует внесения изменений в электрическую схему автомобиля, при необходимости позволяет легко вернуться к стандартной системе. Немаловажно и то, что при пониженном наряжении питания бортовой сети (при включении стартера, например) автоматически включается многоискровой режим. Устройство работоспособно при снижении напряжения аккумулятора до б. 6,5 В.

Далее...